Archive

Archive for the ‘Ethnobotany’ Category

A Review of Jatropha multifida Linn.

December 9, 2010 Leave a comment

 

PDF

General Information

Jatropha multifida Linn. (Synonim: Adenoropium multifidum (L.) Pohl and  J. janipha Blanco) belong to the family Euphorbiaceae (Padua et al., 1999), origin uncertain but probably in digenous to Barbados. A very attractive and widely cultivated species throughout the tropics and is commonly known as coral plant or French physic nut (Dehgan, 1982). Shrubs or treelets, 2-3(-6) m tall, stems glabrous. Stipules divided into forked setiform; to 2 cm, petiole 10-25 cm, leaf blade orbicular in outline, 10-30 cm wide, green adaxially, graygreen abaxially, glabrous on both surfaces, margin palmately 9-11 lobed, lobes entire, venation pinnate. Inflorescenes terminal peduncle 13-20 cm, pedicles short, flowers dense. Male flowers: calyx 2-3 mm, lobes 5, rotund, glabrous; sepals 5, spatulate, red, ca. 4 mm; stamens 8; filaments connate at base; anthers elongate. Female flowers: calyx as in male; sepals 6-7 mm, red; ovary glabrous; styles 3, connate in lower 1/2. Capsules ellipsoidal to obovate, ca. 3 cm, glabrous (Shu et al., 2008). J. multifida Linn. is grown as an ornamental plant in north Australia and South east Africa (Nayak and Patel, 2009), likewise in Philippines, Srilanka and Indonesia, expecially in Java and Sulawesi Islands.

Medicinal Properties

All parts of this plant, but particularly the seeds, are reported to have strong purgative properties. The foliage smells like insect repellent and have never seen this plant attacked by insects, although personal communication reports occasional attacks by mites (Dehgan, 1982). The fruits are punget, heating and purgative: useful in piles, wounds, enlarged spleen and skin diseases. The seeds are sweetish, oleaginous; purgavive, aphrodisiac, tonic, causes “Kapah”, “Vata”, and “Pitta”, vominting and burning sensation. The seeds are regarded as a powerful purgative in Cambodia (Kirtikar and Basu, 1981). A case was reported from Srilanka that child spontaneously vomited several times and became drowsy after ingesting the seed of the Kapum Kiriya (J. multifida Linn.) plant which was growing near the fence (Guruge et al., 2007).The toxic element is a toxalbumin named jatrophin which causes agglutination and haemolysis of red  cells and is also injurious to other cells (Lucas and De Silva, 2006). The leaves and latex of J. multifida Linn. are used medicinally. The leaves are used in scabies: the latex is applied over wounds and ulcer and the oil is used both internally and externally as abortifacient (Kirtikar and Basu, 1981). The bark and leaves are used as medicine for neurodermatitis, itchy skin and skin eczema (Shu et al., 2008). The stems was employed as chewing sticks used for dental care in Ekiti state, Nigeria (Kayode and Omotoyinbo, 2008).

Phytochemistry

Chemical investigation has been carried out on J. multifida Linn. and chemical compound mainly terpenoids, alkaloid peptides, phloroglucinols and cyanoglucoside have been isolated.The diterpenoids, multidione (Das et al., 2009a) was isolated from the stems of J. multifida Linn. The compound possesses a phenolic moiety and a long side chain, structurally similar to the B ring of other lathyrane-diterpenoids in seco-form. Multifidone (Das et al., 2009b), a novel cytotoxic lathyrane-type diterpene having six-membered A ring from J. multifida Linn. was determined from detailed analysis of 1D and 2D NMR spectra and X-ray crystallographic analysis. Multifolone and (4E)-jatrogrossidentadione acetate (Das et al., 2008) was isolated from the stems along with five known diterpenoids, a flavone and a coumarino-lignoid. Compound 15-epi-(4E)-jatrogrossidentadione acetate was isolated from the stem (Das et al., 2010). Cyclic peptides have been isolated from the latex were labaditin and biobollein (Kosasi et al., 1989a; Labadie, 1993),  The acylphloroglucinols are multifidol and multifidol glucoside (Kosasi et al., 1989b) were identified as (2-methylbutyryl)phloroglucinol and 1-[(2-methylbutyryl)phloroglucinyll-beta-d-glucopyranoside have been isolated from the latex of J. multifida Linn. The non-cyanogenic cyanoglucoside, 1-cyano-3-β-D-glucopyranosyloxy-(Z)-1-methyl-1-propene named multifidin A (Van den Berg et al., 1995) was isolated from the latex of this plant.

Pharmacology

Antibacterial - Aiyelaagbe (2001) reported antibacterial activity of hexane, ethyl acetate, chloroform and methanol extracts the roots of J. multifida Linn. against Bacillus subtilis and Staphylococcus aures. Labaditin has shown antibacterial against a Gram-positive bacteria, Streptococcus mutans, but no effect against Gram-negative bacteria (Barbosa et al., 2010).

Immunomodulator - Labaditin, a cyclic decapeptide and biobollein, a cyclic nonapeptide were isolated from the latex of J. multifida Linn. on the basis of immunomodulatory activity-guided purification and both peptides selectively inhibited the classical pathway of human complement activation (Kosasi et al., 1989a; Labadie, 1993).

Anticancer - Multifidone isolated from the stems was measured on four different cancerous cell lines (Das et al., 2009b).

References

Aiyelaagbe, O.O. (2001). Antibacterial Activity of Jatropha multifida Roots. Fitoterapia, 72: 544-546.
Barbosa, S.C., Cilli, E.M., Dias, L.G., Stabeli, R.G., Ciancaglini, P. (2010). Labaditin, a Cyclic Peptide with Rich Biotechnological Potential: Preliminary Toxicological Studies and Structural Changes in Water and Lipid Membrane Environment. Amino Acids, Springer.
Das, B., Ravikanth, B., Reddy, K.R., Thirupathi, P., Raju, T.V., Sridhar, B. (2008). Diterpenoids from Jatropha multifida. Phytochemistry, 69:2639-2641.
Das, B., Laxminarayana, K., Krishnaiah, M., Srinivas, Y., Raju, T.V. (2009a). Multidione, a Novel Diterpenoid from Jatropha multifida. Tetrahedron Letters, 50:4885-4887.
Das, B., Reddy, K.R., Ravikanth, B., Raju, T.V., Sridhar, B., Khan, P.U., Rao, J.V. (2009b). Multifidone: a Novel Cytotoxic Lathyrane-Type Diterpene Having an Unusual Six-membered A Ring from Jatropha multifida. Bioorg. Med. Chem. Lett., 19(1): 77-79.
Das, B., Kumar, A.S., Kumar, J.N., Raju, T.V. (2010). A New Macrocyclic Diterpenoid from Jatropha multifida. Nat. Prod. Res., 24: 1510-1513.
Dehgan, B. (1982). Novel Jatrophas for Florida Landscapes. Proc. Fla. State. Hort. Soc., 95: 277-280.
Guruge, K., Seneviratne, A.M.R.D., Badureliya, C. (2007). A Case of Jatropha multifida Poisoning. Sri Lanka Journal of Child Health, 36: 148.
Kayode, J., Omotoyinbo, M.A. (2008). Ethnobotanical Utilization and Conservation of Chewing Sticks Plants Species In Ekiti State, Nigeria. Research Journal of Botany, 3(3): 107-115.
Kirtikar and Basu, (1981). Indian Medicinal Plant, Vol. 4, Page No: 2240-2247.
Kosasi, S., Van Der Sluis, W.G., Boelen, R., ‘t Hart, L.A., Labadie, R.P. (1989a). Labaditin, a Novel Cyclic Decapeptide from the Latex of Jatropha multifida L. (Euphorbiaceae): Isolation and Sequence Determination by Means of Two-Dimentional NMR. FEBS Letters, 256: 91-96.
Kosasi, S., Van Der Sluis, W.G., Labadie, R.P. (1989b). Multifidol and Multifidol Glucoside from the Latex of Jatropha multifida. Phytochemistry, 28: 2439-2441.
Labadie, R.P. (1993). Bioactive Natural Product, ed. S.M. Colegate and R.J. Molyneux, CRC Press, Boca Raton, Ann Arbor, London, Tokyo.
Lucas, G.N., De Silva, T.U.N. (2006). Poisonous Plants of Sri Lanka, 1st ed. Sri Lanka College of Paediatricians.
Nayak, B.S., Patel, K.N. (2009). A Marvel Plant – Jatropha: An Appraisal. International Journal of Pharmaceutical Research, 1(3): 35-39.
Padua, L.S.,  Bunyapraphatsara, N., Lemmens, R.H.M.J. (1999). Plant Resources of South-East Asia No (12)1. Medicinal and poisonous plant 1: Leiden, Backhuys Publishers.
Shu, M.F.S., Bingtao, L., Gilbert, M.G. (2008). Jatropha. Fl. China, 11: 268-269.
Van den Berg, A.J.J., Horsten, S.F.A.J., Bosch, J.J.K., Beukelman, C.J., Kroes, B.H., dan Labadie, R.P., 1995. ‘Multifidin―A Cyanoglucoside in the Latex of Jatropha multifida’. Phytochemistry, 40(2): 597-598.

Categories: Chemistry, Ethnobotany

SECONDARY METABOLITE COMPOUNDS FROM JATROPHA SPECIES

June 29, 2010 2 comments

 

PDF

PDF (Structures)

Several secondary metabolite compounds from some Jatropha species were successfully isolated and identified. Biological activities of some compounds were examined and validated that made Jatropha species become interest for researchers and society, recently.

Jatropha curcas Linn.

J. curcas is a small tree or large shrub, which can reach a height of three to five meters, but under favorable conditions it can attain a height of 8 or 10m. The plant shows articulated growth, with amorphological discontinuity at each increment. The branches contain latex. Normally, five roots are formed from seedlings, one central and four peripheral. A tap root is not usually formed by vegetatively propagated plants. Leaves five to seven lobed, hypostomic and stomata are of paracytic (Rubiaceous) type [1]. The trees are deciduous, shedding the leaves in dry season. Flowering occurs during the wet season an two flowering peaks are often seen, i.e. during summer and autumn. In permanently humid regions, flowering occurs throughout the year. The inflorescence in axillary paniculate polychasial cymes. The plant is monoecious and flowers are unisexual; occasionally hermaphrodite flowers occur [2]. A flower is formed terminally, individually, with female flowers (tricarpellary, syncarpous with trilocular ovary) usually slightly larger and occurs in the hot seasons. In conditions where continous growth occurs, an unbalance of pistillate or staminate flower production results in a higher number of female flowers. Ten staments are arranged in two distinct whorls of five each in asingle column in the androecium, and in close proximity to each other. In the gynoecium, the three slender styles are connate to about two-thirds of their length, dilating to massive bifurcate stigma [2]. The rare hermaphrodite flowers can be selfpollinating. The flowers are pollinated by insects especially honey bees. Each inflorescence yields a bunch of approximately 10 or more ovoid fruits. With good rainfall conditions nursery plants may bear fruits after the first rainy season, and directly sown plants after the second rainy season. Three, bivalve cocci is formed after the seeds mature and fleshly exoacarp dries. The seeds mature about 3-4 months afer flowering. The seeds are black and the seed weight per 1000 is about 727g, there are 1375 seeds/kg/in the average [1]. J. curcas is cultivated as a medicinal plant in many tropical and subtropical countries. It is suitable for preventing soil erosion and shifting of sand dunes. Various parts of the plant hold potential for use as a source of oil, animal feed or medicinal preparations. Recently, their seeds were investigated mainly as a potential source of oil that was recognized as an adequate substitute motor fuel [3].

Ethyl acetate extracts of leave of J. curcas contain a complex of 5-hydroxypyrrolidin-2-one and pyrimidine-2,4-dione (uracil) [4].

The seed kernels of J. curcas were rich in crude protein, CP (31-34.5%) and lipid (55-58%). The major fatty acids found in the oil were oleic (41.5-48.8%), linoleic (34.6-44.4%), palmitic (10.5-13.0%), stearic (2.3-2.8%), cis-11-eicosenoic and cis-11,14-eicosadienoic acids [5]. Seed oil contain 12-deoxy-16-hydroxyphorbol (1) belonging to phorbol ester which has tumor-promoting activity [6]. The common diterpene 12-deoxy-16-hydroxyphorbol in six different diterpene esters from the J. curcas oil have determined using HPLC methode which named as Jatropha factors C1 to C6 (2-7) [7].

From the latex of J. curcas, a novel cyclic octapeptide was isolated and named curcacycline A (8) which displays a moderate inhibition of classical pathway activity of human complement and proliferation of human T-cells [8], curcacycline B (9) [9], jatrophidin I (10) [10] has antifungal activity, and pohlianin A (78) [11] has antifungal and antimalarial activity [10].

Diterpene compounds such as tigliane (11), jatrophone (12) and dinorditerpene (13), 3-O-acetylaleuritolate acid (14), a triterpenoid have been identified from this plant [12]. The roots of J. curcas is a rich source of diterpenes of the daphnane and lathyrane skeletons [13]. From hexane extract of this plant well known jatropholones A (15), B (16) [14], curculathyrane A (17) and B (18), and curcusone A-D (19-22) [13].

Polar fraction of crude extract of the roots of J. curcas contains propacin (23), (+)-jatrophol (24), (+)-marmesin (25) and jatrophine (26). Two type of lathyrane, 15-O-asetil-15-epi-(4E)-jatrogrossidentadione (27) and isojatrogrossidentadione (28) and two podacarpane, 3β-acetoxy-12-methoxy-13-methyl-podocarpa-8,11,13-triene-7-one (20) and 3β,12-hydroxy-13-methyl-podocarpa-8,10,13-triene (30) have been isolated and identified from aerial part of J. curcas [15].

Compound 5α-stigmastane-3,6-dione (31), β-sitosterol (32), estigmasterol (33), taraxasterol (34), daucasterol (35), nobiletin (36), 5-hydroxy-6,7-dimethoxycoumarin (37), 6-methoxy-7-hydroxycoumarin (38), 3-hydroxy-4-methoxybenzaldehide (39), 3-methoxy-4-hydroxybenzoate acid (40), glyceride-1, 2S-tetracosanoate acid (41) and caniojane (42) have been isolated from the roots of J. curcas [14].

Aqueous extracts of leaves of J. curcas were evaluated for antihelmintic activity on adult Indian earthworms Pheretima poshtuma that indicated significant activity [16]. Methanolic extract of this plant has shown antiulcer activity on aspirin-induced gastric lesions in Wistar rats [17]. The in vitro antimicrobial activity of crude ethanolic, methanolic and water extracts of the stem bark of J. curcas against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Streptococcus faecalis, Staphylococcus epidermidis, Shigella dysentriae, Micrococcus kristinae, Klebsiella pneumonia, Bacillus cereus, Bacillus subtilis, Proteus vulgaris dan Serratia marcescens were investigated [18]. Toxicity of seed oil of J. curcas was evaluated against Callosobruchus maculates insects dan its parasite, Dinarmus basalis [19].

The research of nickel toxicity induced in J. curcas has shown a correlation between responses of antioxidant enzymes as well as PAL activities and nickel concentrations in J. curcas cotyledons. The lower nickel concentrations and higher superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) dan phenylalanine ammonia lyase (PAL) activities suggest the tolerance capacity to protect the plant from oxidative damage [20].

Jatropha chevalieri

Isolation compound of latex of J. chevalieri has resulted cyclic peptide, chevalierin A (43), B (44) and C (45) . Compound 43 was evaluated that has antimalarial activity with IC50 8.9 µM [21].

Jatropha elliptica

J. elliptica Muell. Arg., a shrub annual herb distributed throughout the North and the West of Brazil and has been reported to possess several medicinal properties [22,23,24]. J. elliptica is used in the folk medicine for treatment of neoplasia, inflammation, ulcers and diuretic diseases among others [24]. The ethanolic extract of root has shown molluscicidal activity [12].

A penta-substituted pyridine namely diethyl 4-phenyl-2,6-dimethyl-3,5-pyridinecarboxylate (46) was assayed for in vitro antibacterial and resistance-modifying activity against strains of S. aureus possessing the MsrA and NorA resistance efflux mechanisms. Antibiotic efflux studies indicated that the title compound acts as an inhibitor of the NorA efflux pump and restores the level of intracellular drug concentration [12].  This compound was isolated from rhizomes of J. elliptica which has crystal structure was monoclinic ( P121/n1 (no.14), a = 11.204 (5) Å, b = 8.368 (5) Å, c = 18.817 (5) Å, β = 99.366 (5)°, V = 1740.7 Å3, Z = 4, Rgt (F) = 0.054, wRref (F2) = 0.154, T = 293 K) [25]. Isolation compound of the roots of J. elliptica has resulted diterpenoid compound 12, 14, 15, 16, 23, pentatriacontanyl ferulate (47), fraxetin (48) and mixtures of compound 32 and 33 [26].

Compound 12, extracted from J. elliptica inhibited [3H]glutamate binding. These results may indicate a neurochemical parameter possibly related to the antinoceptive activity of these natural compounds [27]. Several biological activities have been reported for 12, including the molluscicidal effect [24], reaction of biological thiols (inhibition tumor activity) [28], interaction with sRNA from Escherichia coli [29], inhibition of insulin release [30], relaxation effect of induced uterine contraction [31], relaxant action in rat portal vein [32], inhibition of lymphocytes activation, probably through inhibition of the protein kinase C pathway [33], antiprotozoal activity [34], antileishmanial activity [35], antileukemic activity against P-388 lymphocytic leukemia at 27 and 12 mg/kg cytotoxicity (ED50) against KB cell culture at 0.17 µg/ml [36].

Jatropha gaumeri

Isolation of secondary metabolite compound from roots extract of J. gaumeri was obtained as 2-epi-jatrogrossidione (49), a rhamnofolane diterpene and 15-epi-4E-jatrogrossidentadione (50), a lathyrane diterpene. Compound 49 has antimicrobial activity and 50 without biological activity. Crude leaf extract of J. gaumeri contains compound 32, 34, triterpenes α-amyrin (51) and β-amyrin (52), which responsible for the antioxidant activity.

Jatropha gossypifolia

J. gossypifolia (synonym: Adenoropium gossypifolia Pohl, J. elegans) belonging to the family Euphorbiaceae [38] is a shrub herb, height 1.8 meter, gregarious with palmately 3-5 lobed leaves and dark red, crimson or purplish flowers. Leaf margins, petioles and stipules are covered with glandular hairs [39].

J. gossypifolia is grows naturally almost entire tropical area in the world [40]. This plant is a native of Brazil, naturalized in many parts of India. It grows on nearly all type of soils within its range. It is common in waste lands, roadsides, poorly tended agricultural fields and river overflow area [41]. Another opinion said that J. gossypifolia is native to the Carribean and tropical America but is now widespread throughout the tropical world. It has been listed as a weed in India, Brazil, Jamaica and Trinidad [42]. Flowering in India occurs from February through July. Sometimes both flowers and fruits will be present at the same time on plant. Upon drying, the capsule valves spring open propelling the seeds a few centimeters [41].

J. gossypifolia is reported to be beneficial to dyscrasia, anemia, vertigo and dysphonia [38]. It is an antibiotic, insecticidal and used in toothache and act as blood purifier [43]. The leaves are employed to carbuncles, eczema and itches, act as purgative and swollen. A decoction of the leaves is useful for stomachache, venereal disease and as blood purifier [44]. The leaves, either in decoction or boiled like spinach, as a purgative remedy for ‘dry belly-ache’. It is used to prepare tea for constipation, the part used not being specified but it is probably the leaves [45]. Extracts of the plant are used as a purgative and emetic, and to treat headache, diarrhea, venereal disease, skin sores, mouth sores and cancer [40]. The seed are used to purgative, its oil similar to Castrol oil (Jatropha) [45]. The use of the seeds in herbal medicine is advised against because of their high toxicity [46]. The seed oil is used as an emetic, purgative and stimulant. It is also applied for ulcers and leprosy and is beneficial in adenites and worm infestation [44]. The roots are recommended for leprosy and as an antidote for snake bite [38].

J. gossypifolia in many country is used as medicinal plant, variously. In India, it is used to treat diarrhea [47] and the roots are employed to dysentery [48]. Decoction of J. gossypifolia in Trinidad are beneficial to treat wound and reduce pain. This beneficial similar to etnoveterinary remedies by certain hunter to treat snakebites, scorpion stings, for injuries and mange of their dogs [49]. Ethnomedicine use in Tobago and Trinidad are to treat snatch wound, sores and swollen [50]. In Ghana, decoction of leaves of J. gossypifolia, Combretum ghaselensis and the whole part of Ocimun canum are used to malarial [51]. In Ekiti, Nigeria, J. gossypifolia were cultivated to serve as boundary plants, erosion control and healing of mouth cancer [52]. In Southern Nigeria, the extract from fresh leaf applied with crushed leaf is routinely used by herbalists and local people to stop bleeding from the skin and nose [53,54] and in Suriname, the fruits are used as a purgative [55].

Ogundare et al. [39] has been reported the antimicrobial activity of leaves extracts of J. gossypifolia against 10 microorganisms (Table 1).

Tabel 1. Antimicrobial activity of leaves extracts of J. gossypifolia.

Inhibition Zone (mm)
Tested Microorganism Chloroform extract of J. gossypifolia Leaves Methanolic extract ofJ. gossypifolia Leaves
Escherichia coli NI NI
Bacillus subtilis NI NI
Salmonella typhi 12.0 12.5
Staphylococcus aureus 6.0 18.0
Proteus mirabilis NI NI
Carynebacterium diptheriae NI NI
Pseudomonas aeroginosa 10.0 12.0
Shigella dysentriae NI NI
Streptococcus pneumonia NI NI
Candida albicans 30.0 35.0
NI: No Inhibition

Secondary metabolites have been isolated and identified from J. gossypifolia:

The Whole Plant

Compounds belonging to diterpenoid have been isolated from the whole plant were citlalitrione (53) [56] and jatrophenone (54) [57]. Compound 54 was found to posses antibacterial activity against Staphylococcus aureus. Its activity was comparable to that of the standard compound, penicillin G [57]. A coumarino-lignoid, propacin (23) also was obtained [58].

Seed

The seed oil of J. gossypifolia contains a phorbol ester, 1 was found to posses activity as a tumor-promoter [6].

Aerial parts and Stems

Two lignans have been isolated from J. gossypifolia was gossypidien (55) [60] that isolated from its stems  and gossypifan (56) [61] that isolated from aerial parts of this plant. A coumarino-lignoid, cleomiscosin (57) was obtained by soxhletation with hexane and ethyl acetate [62]. Furthermore, two lignins namely isogadain [(+)-savinin or hibalactone] (58) [63] and diester jatrodien (59) [64]. Catechin [60] also isolated from its stems bark. The latex contains cyclogossine B (61) [65], a cyclic octapeptide. Cyclogossine A and B was posses to  antimalarial activity [50].

Leaves

Chemicals composition of lipid extracts of leaves of J. gossypifolia (Table 2) have been identified by GC-MS [59].

Table 2. Chemicals composition of lipid extracts of leaves of J. gossypifolia

Compound Composition Relative Abundance (%)
Propanoic acid C3H6O2 0.9
Glycerol C3H8O3 12.0
2-pentenoic acid C3H8O 13.7
Arabitol C5H12O5 12.3
3,7,11,15-tetramethyl-2-hexadecene-1-ol C20H40 2.0
D-Xylofuranose C5H10O5 n.d
D-mannitol C6H14O 0.7
Hexadecanoic acid C16H32O2 7.8
Inositol C6H12O6 n.d
Oleic acid C18H34O2 6.3
Octadecenoic acid C18H36O2 2.7
Octacosan C28H58 n.d
Octacosanol C28H58O 2.3
Stigmasterol C29H48O 2.5
α-Sitosterol C29H50O 8.8
α-Amyrin C30H50O n.d
Lup-20(29)-en-3-on C30H48O n.d
Betulin C30H50O2 n.d

Roots

The roots of J. gossypifolia contains 12 [66], 15 and 16 [26]. Biotransformation of 12 by Aspergillus niger ATCC (American Type Culture Collection) 16404 afforded the new diterpene 9β-hydroxyisabellione (62) [67]. The cytotoxicity of the compounds as IC50 values on AGS and lung fibroblasts was 2.4 and 2.8 µM for 12 and 53.1 and 260 µM for 62, respectively [62].

Jatropha grossidentata

J. grossidentata Pax et Hoffm. is a shrub known as ‘Caniroja’ by the Ayoreo Indians living in the central-northern par of the Paraguayan Chaco. The powdered roots are smoked in shamanic practices [68].

The petroleum ether and ethyl acetate extract of J. grossidentata roots showed in vitro activity against Trypanosoma cruzi and Leishmania strains at 10 µg/mL. Several diterpenes have been isolated from the roots, the main compound being the rhamnofolane jatrogrossidione (49) [69,70]. Compound 49 showed a strong in vitro leishmanicidal and trypanocidal activity with IC100 of 0.75 and 1.5-5.0 µg/mL, respectively.

Jatropha integerrima

J. integerrima Jacq. (syn. J. pandurifolia Andr.) is a shrubby tree of which the medicinal properties have not been reported. Its latex is however known to be toxic. The leaves, if accidentally chewed can cause squeamish, stomachalgia and can be very purgative [71].

CH2Cl2 extracts of latex of J. integerrima contains two new cyclic heptapeptides, integerrimides A (63) and B (64). Both peptides 63 and 64 at 50 µM inhibited to a certain degree cell proliferation of human ICP-298 melanoma cells, as well as cell, migration of human Capan II pancreatic carcinoma cells, buth both compounds were inactive in HSV-1, antifungal and antimalarial assays [71].

The roots of J. integerrima contains rhamnofolane endoperoxide  2-epicaniojane together with caniojane and 1,11-bisepicaniojane (65) and integerrimene (66), a 8,9-seco-rhamnofolane skeletons and a possible biogenetic precursor [72].

Jatropha multifida

Latex of J. multifida contain a novel non-cyanogenic cyanoglucoside, 1-cyano-3-β-D-glucocyranosyloxy-(Z)-1-methyl-1-propene was named multifidin A (67) [73]. Previously, isolation of multifidol (68) and its glucoside (69) [74), two cyclic peptides, labaditin (70) [75], a cyclic decapeptide and biobollein (71) [76], a cyclic nonapeptide have been reported.

Jatropha podagrica

Tetramethylpirazine (TMPZ) [77] is an alkaloid found in J. podagrica that causes vasolidation [78] and reduces thrombosit [79].

The roots of J. podagrica contains a new aliphatic acid named japodic acid (72) with a gem-dimethyl cyclopropane ring [80]. Compound 72 showed mild insect growth inhibition activity against Helicoverpa zea and were inactive in the antibacterial assays. Methanolic and khloroform extract of the roots of J. podagrica contains fraxidin (73) and erythrinasinate (74). Both compounds exhibited antibacterial activity against Bacillus subtilis [80]. Futhermore, two peptides, podacycline A (75), a cyclic nonapeptide and podacycline B (76), a cyclic heptapeptide were isolated from the latex of J. podagrica [81].

Podacycline B was found to possess high cytotoxicity against Dalton’s lymphoma ascites (DLA) and Ehrlich’s ascites carcinoma (EAC) cell lines with IC50 values of 13.2 and 15.5 µM, in addition to moderate anthelmintic activity against earthworms Megascoplex konkanensis, Pontoscotex corethruses and Eudrilus sp. at a dose of 2 mg/mL [82].

Jatropha pohliana

J. pohliana Müll. Arg. (Syn: Adenophorum molissimum Pohl, Adenophorum luxurians Pohl, Jatropha molissimma (Pohl) Baill., Jatropha pohliana var. mollissima (Pohl) Müll. Arg., Jatropha luxurians (Pohl) Baill.) known as Pinhão-bravo and  pinhão-de-purga [83].

Three cyclic peptides, pohlianin A (77), B (78) and C (79) was isolated from the latex of J. pohliana, which found to posses antimalarial activity with IC50 values of 57 μM, 25 μM and 16 μM, respectively. Compound 79 being the more potent [11].

Jatropha tanjorensis

J. tanjorensis has medium thick stout stem with sparse branching, sparse pigmentation. Leaves alternate, palmately five lobed, light green to dark green with no pigmentation except on very young leaves, margins distantly serrate, long petiole with dense pigmentation. Cymose inflorescence with coinflorescence, monoecious unisexual and bisexual, medium sized green with pale pink tinged flowers, 8 yellow stamens arranged in a single layer, highly sterile pollen. Fruit not seen [84]

J. tanjorensis is popular as a natural remedy against malaria infection and hypertension in some parts of Nigeria, however there is dearth in scientific validation of these claims [85]. Edo people in Nigeria consumed the leaves as a vegetable and known as catholic vegetable [86]. Phytochemical screening of J. tanjorensis leaf revealed that it contains bioactive principles such as alkaloids, flavonoids, tannins, cardiac glycosides, anthraquinones and saponins [87].

Jatropha unicostata

Relative composition of the leaves of J. unicostata were unidentified sterol (0.9%), campesterol (4.9%), stigmasterol (36.5%), sitosterol (56.4%), stigmastanol (1.3%); 76 mg 3-oxo-steroids: campest-4-en-3-one (6.6%), stigmast-4,22-diene-3-one (19.8%), stigmast-4-en-3-one (78.3%); 26 mg dioxosteroids: campest-4-en-3,6-dione (5.6%), stigmast-4,22-diene-3,6-dione (42.2%), stigmast-4-en-3,6-dione (52.2%). The observed ketosteroids might be constituents of the latex from J. unicostata. Fraxetin (7,8-dihydroxy-6-methoxy-coumarin) and luteolin (3’,4’, 5,7-tetrahydroxyflavone) were isolated as main constituents from the ethyl acetate fraction [88].

Jatropha weddelliana

J. weddelliana is a shrub found in calcimorphic and dry soils of the highlands bearing the ‘pantanal’ of Mato Grosso do Sul, Brazil [89].

Hexane extracts of the roots of J. weddelliana contains 14 and 32. A diterpene with type of lathyrane skeletons named jatrowedione (80) was isolated from the stems extracts of this plant [90].

References

[1].        A. Kumar and S. Sharma, An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): A review, Industrial Crops and Products, 2008.

[2].        B. Dehgan, and G.L. Webster, Morphology and intrageneric relationships of the genus Jatropha (Euphorbiaceae), vol. 74, University of California Publications in Botany, 1979.

[3].        K. Openshaw, Biomass Bioenergy, 2000, 19, 1-15.

[4].        R. Staubmann, M. Schubert-Zsilavecz, A. Hiermann and T. Kartnig, Phytochemistry, 1999, 50, 337-338.

[5].        J. Martínez-Herrera, P. Siddhuraju, G. Francis, G. Dávila-Ortíz and K. Becker, Food Chemistry, 2006, 96, 80-89.

[6].        M. Hirota, M. Suttajit, H. Suguri, Y. Endo, K. Shudo, V. Wongchai, E. Hecker and H. Fujiki, Cancer Research, 1988, 48, 5800-5804.

[7].        W. Haas, H. Sterk and M. Mittelbach, J. Nat. Prod., 2002, 65, 1334-1440.

[8].        A.J.J. van den Berg, S.F.A.J. Horsten, J.J. Kettenes-van den Bosch, B.H. Kroes, C.J. Beukelman, B.R. Leeflang and R.P. Labadie, FEBS Lett., 1995, 358, 215.

[9].        C. Auvin-Guette, C. Baraguey, A. Blond, F. Lezenven, J.L. Pousset and B. Bodo, Tetrahedron Lett. 1997, 38, 2845.

[10].    W.F. Altei, M.S. Saito, D.G. Picchi, E.M. Cilli, P. Pauletti, D.H.S. Silva, I. Castro-Gamboa, M.J. Giannini, H. Verli and V.S. Bolzani, 1st Brazilian Conference on Natural Products, Brazil, 2007.

[11].    C. Auvin-Guette, C. Baraguey, A. Blond, H.S. Xavier, J.L. Pousset, and B. Bodo, Tetrahedron, 1999, 55, 11495-11510.

[12].    Marquez, L. Neuville, N. Moreau, J.P. Genet, A.F. dos Santos, M.C.C. de Andrade and A.E.G. Sant’Ana, Phytochemistry, 2005, 66, 1804-1811.

[13].    W. Naengchomnong, B. Tarnchompoo, and Y. Thebtaranonth, J. Sci. Soc. Thailand, 1994, 20, 73-83.

[14].    K. Ling-yi, M. Zhi-da, S. Jian-xia and F. Rui, Acta Botanica Sinica, 1996, 38(2), 161-166.

[15].    N. Ravindranath, M.R. Reddy, C. Ramesh, R. Ramu, A. Prabhakar, B. Jagadeesh and B. Das, Chem. Pharm. Bull., 2004, 52(2), 608-611.

[16].    R.A. Ahirrao, S.P. Pawar, L.B. Borse, S.L. Borse, S.G. Desai and A.K. Muthu, Pharmacologyonline, 2009, 1, 276-279.

[17].    N. Kannappan, S. Jaikumar, R. Manavalan and A.K. Muthu, Pharmacologyonline, 2008, 1,279-293.

[18].    O.O. Igbinosa, E.O. Igbinosa and O.A. Aiyegoro, Afr. J. Pharm. & Pharmacol., 2009, 3(2), 058-062.

[19].    B.A. Boateng and F. Kusi, J. Applied Sci. Res., 2008, 4(8), 945-951.

[20].    R. Yan, S. Gao, W. Yang, M. Cao, S. Wang and F. Chen, Plant Soil Environ., 2008, 54(7), 294-300.

[21].    C. Baraguey, C. Auvin-Guette, A. Blond, F. Cavelier, F. Levenzen, J.L. Pousset and B. Bodo, J. Chem. Soc., Perkin Trans, 1998, 1, 3033-3039.

[22].    M.P. Correa and L.A. Penna, Dicionario das Plantas Uteis do Brasil e das Exoticas Cultivadas, Vol. III. Ministerio da Agricultura, Instituto Brasileiro de Desenvolvimento Florestal, RJ Brasil, 1984.

[23].    J.A. Duke, Handbook of Medicinal Herbs, CRC Press, Florida, USA, 1985.

[24].    A.F. dos Santos and A.E.G. Sant’Ana, Phytother. Res., 1999, 13, 660-664.

[25].    A.F. Silva, C.A. Simone, A.E.G. Sant’Ana, M.A. Pereira and V.R.S. Malta, Z. Kristallogr. NCS, 2005, 220, 611-612.

[26].    M.O.F. Goulart, A.E.G. Sant’Ana, R.A. de Lima and S.H. Cavalcante, Química Nova, 1993, 16(2), 95-100.

[27].    L.H. Martini, C.R. Souza, P.B. Marques, J.B. Calixto, R.A. Yunes and D.O. Souza, Neurochemical Research, 2000, 25(2), 211-215.

[28].    J.R. Lillehaug, K. Kleppe, C.W. Sigel, S.M. Kupchan, Biochim. Biophys. Acta, 1973, 327, 92-100.

[29].    M. D’Alagni, M. De Petris, G.B. Marini-Bettolo, P.A. Temussi, FEBS Lett., 1983, 164, 51-56.

[30].    F.V. Menezes, E.M. Carneiro, E. Delattre, A.C. Boschero, Braz. J. Med. Biol. Res., 1992, 25, 305-307.

[31].    J.B. Calixto, A.E. Sant’Ana, Gen. Pharmacol., 1990, 21, 117-122.

[32].    A.M. Silva, R.L. Brum, J.B. Calixto, Life Sci., 1995, 57, 863-871.

[33].    V.L. Goncalves de Moraes, V.M. Rumjanek, J.B. Calixto, Eur. J. Pharmacol., 1996, 312, 333-339.

[34].    G. Schmeda-Hirschmann, I. Razmilic, M. Sauvain, C. Moretti, V. Munoz, E. Ruiz, E. Balanza, A. Fournet, Phytother. Res., 1996, 10, 375-378.

[35].    M.J. Chan-Bacab and L.M. Peña-Rodríguez, Nat. Prod. Rep., 2001, 18, 674-688.

[36].    G. Goel, H.P.S. Makkar, G. Francis and K. Becker, International Journal of Toxicology, 2007, 26, 279-288.

[37].    R. Can-Aké, G. Erosa-Rejón, F. May-Pat and L.M. Peña-Rodríguez, Quím. Méx., 2004, 48, 11-14.

[38].    K.R. Kirtikar and B.D. Basu, Indian Medicinal Plants, Vol. III, 1980.

[39].    A.O. Ogundare, Trends In Applied Sciences Research, 2007, 2(2), 145-150.

[40].    H.M. Burkill, The Useful Plants of West Tropical Africa, Vol. 2, Royal Botanic Gardens, Kew, UK, 1994.

[41].    A. Kakade, M. Pawar, K. Wadkar, S. Patil, C.S. Magdum and N.S. Naikwade, Pharmacognosy Reviews, 2008, 2(4), 2-6.

[42].    S. Csurches and R. Edwards, Potential Environmental Weeds In Australia, The Director of The National Parks and Wildlife, Canberra, 1998.

[43].    W. Balee, Footprints of Forest, Ka’apor Ethnobotany-The Historical Ecology of Plant Utilization by An Amazonian People, Columbia University Press, New York, 1994.

[44].    J. Banerji, B. Das, P. Bose, R. Chakabarti, and A. Chaterjee, Traditional Medicine, Oxford and IBH Publishing Co. Pvt, Ltd, New Dehli, 1993.

[45].    G.F. Asprey and P. Thornton, West Indian Medicinal Journal, 2005, 2(3), 3(1).

[46].    H.A. Lioglier, Plantas Medicinales de Puerto Rico y del Caribe, Iberoamericana de Ediciones, Inc., San Juan, PR, 1990.

[47].    S.K. Dash and S. Padhy, J. Hum. Ecol., 2006, 20(1), 59-64.

[48].    R. Dabur, A. Gupta, T.K. Mandal, D.D. Singh, V. Bajpai, A.M. Gurav and G.S. Lavekar, Afr. J. Trad., 2007, 4(3), 313-318.

[49].    C. Lans, T. Harper, K. Georges and E. Bridgewater, BMC Complementary and Alternative Medicine, 2001, 1, 10.

[50].    C. Lans, J. Ethnobiology and Ethnomedicine, 2007, 3(3), 1-12.

[51].    A. Asase, J. Ethnopharmacology, 2005, 99, 273-279.

[52].    J. Kayode and M.A. Omotoyinbo, Research Journal of Botany, 2008, 3(3), 107-115.

[53].    T. Oduola, O.G. Adeosun, T.A. Oduola, O.G. Avwiroro and M.A. Oyeniyi, Euro. J. Gen. Med., 2005, 2(4), 140-143.

[54].    T. Oduola, O.G. Avwiroro and T.B. Ayanniyi, Afr. J. Biotech., 2005, 4(7), 679-681.

[55].    T.V. Andel, J. Behari-Ramdas, R. Havinga and S. Groenendijk, Ethnobotany Research & Applications, 2007, 5, 351-372.

[56].    B. Das and B. Venkataiah, Biochemical Systematics and Ecology, 1999, 27, 759-760.

[57].    B. Das, N. Ravindranath, B. Venkataiah, C. Ramesh and P. Jayaprakash, Chem. Pharm. Bull., 2003, 51(7), 870-871.

[58].    B. Das and B. Venkataiah, Biochemical Systematics and Ecology, 2001, 29, 213-214.

[59].    O.O. Sonibare, M.A. Sonibare and E. Akharame, European Journal of Scientific Research, 2008, 21(1), 209-211.

[60].    B. Das and G. Anjani, Phytochemistry, 1999, 51, 115-117.

[61].    B. Das and R. Das, Phytochemistry, 1995, 40(10), 931-932.

[62].    B. Das, A. Kashinatham, B. Venkataiah, K.V.N.S. Srivinas, G. Mahender and M.R. Reddy,  Biochemical Systematics and Ecology, 2003, 31, 1189-1191.

[63].    B. Das, S.P. Rao and K.V.N.S. Srivinas, Planta Med., 1996, 62.

[64].    B. Das, S.P. Rao, K.V.N.S. Srivinas and R. Das, Phytochemistry, 1996, 41, 985.

[65].    C. Auvun-Guette, C. Baraguey, A. Blond, J. L. Pousset and B. Bodo, J. Nat. Prod., 1997, 60, 1155.

[66].    S.M. Kupchan, C.W. Sigel, M.J. Matz and R.F. Bryan, J. Am. Chem. Soc., 1970, 92(14), 4476.

[67].    M. Pertino, G. Schmeda-Hirschmann, L.S. Santos, J.A. Rodríguez and C. Theoduloz, Z. Naturforsch, 2007, 62b, 275-279.

[68].    G. Schmeda-Hirschmann, J. Ethnopharmacol., 1993, 39, 105-111.

[69].    J. Jakupovic, M. Grenz and G. Schmeda-Hirschmann, Phytochemistry, 1988, 27(9), 2997-2998.

[70].    G. Schmeda-Hirschmann, F. Tsichritzis, and J. Jakupovic, Phytochemistry, 1992, 31, 1731-1735.

[71].    W. Mongkolvisut, S. Sutthivaiyakit, H. Leutbecher, S. Mika, I. Klaiber, W. Möller, H. Rösner, U. Beifuss and J. Conrad, J. Nat. Prod., 2006, 69(10), 1435-1441.

[72].    S. Sutthivaiyakit, W. Mongkolvisut, P. Ponsitipiboon, S. Prabpai, P. Kongsaeree, S. Ruchirawat and C. Mahidol, Tetrahedron Letters, 2003, 44, 3637-3640.

[73].    A.J.J. Van den Berg, S.F.A.J. Horsten, J.J.K. Bosch, C.J. Beukelman, B.H. Kroes and R.P. Labadie, Phytochemistry, 1995, 40(2), 597-598.

[74].    S. Kosasi, W.G. Van der Sluis and R.P. Labadie, Phytochemistry, 1989, 28, 2439-2441.

[75].    S. Kosasi, W.G. Van der Sluis, R. Boelens, L.A. ‘t Hart and R.P. Labadie, FEBS Letters, 1989, 256, 91.

[76].    R.P. Labadie, in Bioactive Natural Product, ed. S.M. Colegate and R.J. Molyneux, CRC Press, Boca Raton, Ann Arbor, London, Tokyo, 1993.

[77].    J.A.O. Ojewole and O.O. Odebiyi, Planta Med., 1980, 38, 332.

[78].    X.Z. Dai and R.J. Bache, J. Cardiovasc. Pharmaeol., 1985, 7,841.

[79].    W.J. Wang, J. Neurol. Psychiat., 1984, 17, 121.

[80].    O.O. Aiyelaagbe and J.B. Gloer, Rec. Nat. Prod., 2008, 2(4), 100-106.

[81].    A.J.J. Van den Berg, S.F.A.J. Horsten, J.J.K. Bosch, C.J. Beukelman, B.H. Kroes, B.R. Leeflang and R.P. Labadie, Phytochemistry, 1996, 42(1), 129-133.

[82].    R. Dahiya, J. Iran. Chem. Soc., 2008, 5(3), 445-452.

[83].    C.K.A. Leal and M.F. Agra, Acta Farm. Bonaerense, 2005, 24(1), 5-13.

[84].    A.J. Prabakaran and M. Sujatha, Genetic Resources and Crop Evolution, 1999, 46, 213-218.

[85].    E.S. Orhue, M. Idu, J.E. Ataman and L.E. Ebite, Asian J. Biol. Sci., 2008.

[86].    J.K. Mensah, R.I. Okoli, J.O. Ohaju-Obodo and K. Eifediyi, Afr. J. Biotech., 2008, 7(14), 2304-2309.

[87].    S.O. Ehimwenma and A.U. Osagie, Plant Arch., 2007, 7, 509-516.

[88].    K. Franke, A.K. Nasher , and J. Schmidt, Biochemical Systematics and Ecology, 2004, 32, 219-220.

[89].    A. Pott and V.J. Pott, Plantas do Pantanal, EMBRAPA, Corumbá, Brasil, 1994.

[90].    R.L. Brum, N.K. Honda, S.M. Mazarin, S.C. Hess, A.J. Cavalheiro and F.D. Monache, Phytochemistry, 1998, 48(7), 1225-1227.

Categories: Chemistry, Ethnobotany

SENYAWA METABOLIT SEKUNDER DARI SPESIES JATROPHA

June 14, 2010 12 comments

Senyawa metabolit sekunder dari beberapa spesies Jatropha telah berhasil diisolasi dan diidentifikasi strukturnya. Aktivitas biologis beberapa senyawa telah dikaji dan divalidasi sehingga membuat spesies Jatropha saat ini menjadi sangat menarik bagi para peneliti dan masyarakat.

Jatropha curcas

Jarak pagar (J. curcas L., Euphorbiaceae) merupakan tumbuhan semak berkayu yang banyak ditemukan di daerah tropik. Tumbuhan ini dikenal sangat tahan kekeringan dan mudah diperbanyak dengan stek. Walaupun telah lama dikenal sebagai bahan pengobatan dan racun, saat ini ia makin mendapat perhatian sebagai sumber bahan bakar hayati untuk mesin diesel karena kandungan minyak bijinya [1]. Tanaman jarak pagar memiliki batang berkayu, silindris, bercabang, berkulit licin, memiliki tonjolan-tonjolan bekas tangkai daun yang gugur. Bila dipatah-patahkan atau terluka, batangnya akan mengeluarkan getah putih, kental dan agak keruh. Daunnya daun tunggal, tersebar di sepanjang batangnya. Bunga majemuk bentuk malai, berwarna kuning kehijauan, berkelamin tunggal, berumah satu. Baik bunga jantan maupun betina tersusun dalam rangkaian berbentuk cawan, muncul di ujung batang atau di ketiak daun [2]. J. curcas dibudidayakan sebagai tanaman obat di negara-negara tropis dan subtropis. Tanaman ini cocok untuk mencegah erosi tanah dan pergeseran bukit berpasir. Berbagai bagian tanaman berguna sebagai sumber minyak, makanan hewan dan pembuatan bahan obatan. Akhir-akhir ini, biji J. curcas diteliti sebagai potensi sumber minyak yang diakui sebagai pengganti bahan bakar motor [3].

Ekstrak etil asetat daun J. curcas mengandung kompleks 5-hidroksipirolidin-2-on dan pirimidin-2,4-dion (urasil) [4]. Biji J. curcas kaya akan protein kasar, CP (31-34.5%) dan lipid (55-58%). Kandungan pati dan gula terlarut total dibawah 6%. Minyaknya mengandung asam lemak yaitu asam oleat (41.5-48.8%), asam linoleat (34.6-44.4%), asam palmitat (10.5-13.0%), asam stearat (2.3-2.8%), asam cis-11-eicosenoat dan asam cis-11,14-eicosadienoat [5]. Minyak biji J. curcas mengandung senyawa phorbol ester yaitu 12-deoksi-16-hidroksiphorbol (1) yang memiliki aktivitas sebagai antitumor [6]. Diterpen 12-deoksi-16-hidroksiphorbol dalam enam ester diterpen yang berbeda dari minyak J. curcas menggunakan metode HPLC yang diberi nama Jatropha factor C1 sampai C-6 (2-7) telah diisolasi [7].

Isolasi lateksnya menghasilkan senyawa oktapeptida siklik yaitu curcacycline A (8) yang menunjukkan adanya inhibisi terhadap jalur aktivitas metabolit sekunder pada manusia dan perkembangbiakan (proliferation) sel-sel T pada manusia [8], curcacycline B (9) [9], jatrophidin I (10) [10] yang memiliki sifat antifungi dan pohlianin A (78) [11] yang memiliki aktivitas antifungi dan antimalaria [10].

Senyawa-senyawa diterpen seperti tigliane (11), jatrofon (12) dan dinorditerpene (13), triterpenoid asam 3-O-asetilaleuritolat (14) telah teridentifikasi dari tanaman ini [12]. Akar J. curcas merupakan sumber banyak senyawa diterpen dengan kerangka daphnane dan lathyrane [13]. Senyawa diterpen yang berasal dari ekstrak heksan tanaman ini adalah jatrofolon A (15) dan B (16) [14], curculathyrane A (17), dan B (18) serta curcusone A-D (19-22) [13].

Sementara itu, fraksi polar ekstrak kasar akar J. curcas mengandung propasin (23), (+)-Jatrofol (24), (+)-marmesin (25) dan jatrofin (26) [13]. Dua senyawa tipe lathyrane yaitu senyawa 15-O-asetil-15-epi-(4E)-jatrogrossidentadion (27) dan isojatrogrossidentadion (28) dan dua senyawa podacarpane yaitu 3β-asetoksi-12-metoksi-13-metil-podokarpa-8,11,13-triena-7-on (29) dan 3β,12-hidroksi-13-metil-podokarpan-8,10,13-triena (30) [15].

Senyawa 5α-stigmastane-3,6-dione (31), β-sitosterol (32), estigmasterol (33),  taraxasterol (34), daucasterol (35), nobiletin (36), 5-hidroksi-6,7-dimetoksikumarin (37), 6-metoksi-7-hidroksikumarin (38), 3-hidroksi-4-metoksibenzaldehida (39), asam 3-metoksi-4-hidroksibenzoat (40) asam gliserida-1 2S-tetracosanoat (41) dan caniojane (42) merupakan senyawa yang diisolasi dari akar J. curcas [14].

Ekstrak daun J. curcas memiliki aktivitas antihelmintes yang diuji terhadap cacing tanah dewasa asal Indian, Pheretima posthuma. [16], Ekstrak methanol tanaman ini memiliki aktivitas antiulcer (anti isul, borok) terhadap tikus Wistar [17]. Sementara itu, ekstrak kasar etanol, metanol dan air dari kulit batang J. curcas memiliki aktivitas antimikroba in vitro terhadap Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Streptococcus faecalis, Staphylococcus epidermidis, Shigella dysentriae, Micrococcus kristinae, Klebsiella pneumonia, Bacillus cereus, Bacillus subtilis, Proteus vulgaris dan Serratia marcescens [18]. Toksiksitas Minyak biji J. curcas telah diujikan terhadap insekta Callosobruchus maculatus dan parasitnya, Dinarmus basalis [19].

Penelitian tentang toksiksitas nikel yang diberikan kepada tanaman J.curcas menunjukkan adanya korelasi antara respon enzim antioksidan dan aktivitas PAL dengan konsentrasi nikel dalam kotiledon J. curcas. Konsentrasi nikel yang lebih rendah dan aktivitas superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) dan phenylalanine ammonia lyase (PAL) yang tinggi menunjukkan kapasitas toleransi untuk melindungi tanaman ini dari kerusakan oksidatif [20].

Jatropha chevalieri

Isolasi senyawa yang terkandung dalam lateks J. chevalieri menghasilkan chevalierin A (43), B (44) dan C (45) yang merupakan peptida siklik. Senyawa 43 menunjukkan aktivitas antimalaria dengan IC50 8.9 μM [21].

Jatropha elliptica

J. elliptica Muell. Arg. merupakan perdu tahunan yang tersebar di daerah utara dan barat Brazil dan dilaporkan memiliki beberapa kegunaan dalam obat-obatan [22,23,24]. J. elliptica digunakan oleh masyarakat untuk mengobati penyakit neoplasia, inflamasi, lambung dan beberapa diantaranya penyakit diuretika [24]. Ekstrak etanol akar tanaman ini menunjukkan aktivitas moluskasidal [12].

Senyawa 4-etil-2,6-dimetil-3,5-piridinekarboksilat (46) telah diujikan secara in vitro untuk aktivitas antibakteri dan resistansi terhadap strain Staphylococcus aureus yang memiliki mekanisme aliran resistansi MsrA dan NorA. Kajian antibiotik mengindikasikan bahwa senyawa ini bertindak sebagai penghalang (inhibitor) aliran pompa NorA dan memulihkan tingkat konsentrasi obat intraselular [12]. Senyawa yang diisolasi dari rhizoma J. elliptica ini memiliki struktur kristal monoklinik ( P121/n1 (no.14), a = 11.204 (5) Å, b = 8.368 (5) Å, c = 18.817 (5) Å, β = 99.366 (5)°, V = 1740.7 Å3, Z = 4, Rgt (F) = 0.054, wRref (F2) = 0.154, T = 293 K) [25]. Isolasi senyawa dari akar J. elliptica menghasilkan diterpen yaitu senyawa 12, 15 dan 16, 14, 23, ester ferulat yaitu pentatriacontanil ferulat (47), kumarin yaitu fraxetin (48) dan campuran steroid yaitu senyawa 32 dan 33 [26].

Senyawa 12 dari J. elliptica menghalangi pengikatan [3H]glutamat. Hasil ini mengindikasikan suatu kemungkinan parameter neurokimia yang berkaitan dengan aktivitas antinoseptif dari senyawa ini [27]. Senyawa ini juga telah diuji aktivitas biologisnya meliputi efek moluskasidal [24], reaksi biologis tiol (inhibisi aktivitas tumor) [28], interaksi dengan sRNA Escherichia coli [29], inhibisi pelepasan insulin [30], efek relaksasi dari kontraksi uterin terinduksi [31], relaksan pada pembuluh portal tikus [32], inhibisi aktivasi limfosit, kemungkinan melalui inhibisi protein kinase jalur C [33], aktivitas antiprotozoa [34], aktivitas antileismanial [35], aktivitas antileukemia terhadap limpotik leukemia P-388 pada sitotoksisitas (ED50­) 27 dan 12 mg/kg terhadap kultur sel KB pada 0,17 µg/mL [36].

Jatropha gaumeri

Isolasi senyawa metabolit sekunder dari ekstrak akar J. gaumeri menghasilkan senyawa diterpene dengan kerangka rhamnofolan, 2-epi-jatrogrossidion (49) dan diterpen lathyran, 15-epi-4E-jatrogrossidentadion (50). Senyawa 49 memiliki aktivitas antimikroba dan senyawa 50 tidak menunjukkan aktivitas biologis. Ekstrak kasar daun J. gaumeri mengandung 32, 34, triterpene α-amyrin (51), dan β-amyrin (52) yang memiliki aktivitas sebagai antioksidan [37].

Jatropha gossypifolia

Jatropha gossypifolia (sinonim : Adenoropium gossypifolia Pohl, Jatropha elegans) termasuk dalam famili Euphorbiaceae [38] adalah tanaman semak, tumbuh berumpun, tingginya mencapai 1,8 meter, daunnya berlekuk 3-5 dengan panjang dan lebar 20 cm, daun memiliki petiola yang panjang, ditutupi oleh rambut [39].

J. gossypifolia tumbuh alami di hampir seluruh daerah tropis di dunia [40]. Tanaman ini adalah tanaman asli Brazil, tumbuh alami di beberapa daerah di India. J. gossypifolia tumbuh hampir di semua jenis tanah, lahan pembuangan limbah, sisi-sisi jalan, di daerah aliran sungai dan jarang ditanam di lahan pertanian [41]. Pendapat lain menyatakan bahwa J. gossypifolia adalah tanaman asli Carribean dan Amerika beriklim tropis tetapi sekarang telah tersebar di seluruh wilayah tropis [42]. Tanaman ini telah diklasifikasikan sebagai suatu perdu (semak) di India, Brazil, Jamaika dan Trinidad. Di India, bunga J. gossypifolia mekar mulai bulan Februari hingga Juli. Kadang-kadang, beberapa bunga dan buahnya akan muncul pada waktu yang sama. Ketika musim semi, katup kapsul akan terbuka dan nampak biji-biji yang berukuran kecil [41].

Tanaman ini dilaporkan dapat mengobati diskrasia, anemia, pusing dan disphonia [38]. Tanaman ini adalah antibiotik, insektisidal, dan digunakan untuk sakit gigi dan sebagai pembersih darah [43]. Daun J. gossypifolia dipakai untuk mengobati bisul, eksim dan gatal-gatal, demam, dan bertindak sebagai pencahar serta bengkak. Jamu-jamuan dari daun tanaman ini berguna untuk mengobati sakit perut, penyakit kelamin dan sebagai pembersih darah [44]. J. gossypifolia daunnya digunakan untuk jamu-jamuan yang direbus atau dididihkan seperti bayam, sebagai obat pencahar untuk ‘belly-ache kering’. Tanaman ini dijadikan sebagai teh untuk mengobati sembelit, bagian yang digunakan ini tidak dispesifikasikan, tetapi kemungkinan adalah bagian daunnya seperti yang dipakai pada pengobatan jaman dulu [45]. Daun J. gossypifolia digunakan untuk mengobati gejala demam, bisul, eksim, gatal-gatal, sakit pada gusi anak-anak, bengkak, sakit perut dan penyakit kelamin [43]. Biji J. gossypifolia digunakan untuk pencahar, minyaknya serupa dengan minyak kastrol (jarak) [45]. Namun, penggunaan biji J. gossypifolia dalam obat herbal tidak disarankan karena memiliki toksiksitas yang tinggi [46]. Minyak dari biji J. gossypifolia digunakan sebagai emesis, pencahar dan stimulan, selain itu juga diterapkan untuk bisul (borok) dan lepra serta cacingan [44]. Sementara itu, akar J. gossypifolia dianjurkan untuk lepra dan mengobati bisa gigitan ular [38].

Bagian dari J. gossypifolia yang lain digunakan di beberapa negara dengan banyak cara. Di beberapa negara seperti India, J. gossypifolia digunakan untuk mengobati diare [47] dan akarnya mengobati disentri [48]. Air rebusan J. gossypifolia di Trinidad dimanfaatkan untuk mengobati luka dan mengurangi rasa nyeri. Penggunaan ini serupa dengan penggunaan secara etnoveterinari (pada hewan) yaitu mengobati gigitan ular, sengatan kalajengking, luka dan kudis pada anjing pemburu mereka [49]. J. gossypifolia di Trinidad dan Tobago secara etnomedisin digunakan untuk mengobati luka sabetan, luka dan bengkak [50].  Di Ghana, J. gossypifolia dimanfaatkan secara etnobotani untuk mengobati malaria dengan cara merebus daun tanaman ini dengan daun Combretum ghaselensis dan keseluruhan bagian tanaman Ocimun canum, kemudian air rebusannya diminum [51]. Air rebusan daun J. gossypifolia digunakan untuk luka, keseleo, ruam pada wajah dan kecantikan di Amerika dan Caribbean. Di Ekiti, Nigeria, J. gossypifolia ditanam sebagai pagar pembatas tanah dan kontrol erosi serta digunakan untuk menyembuhkan kanker mulut [52]. Sementara itu, di Nigeria bagian selatan, lateks batang J. gossypifolia secara rutin digunakan oleh para ahli obat herbal, penduduk pedesaan dan beberapa masyarakat di pusat-pusat kota untuk menghentikan pendarahan dari hidung (mimisan), sakit gusi dan kulit tanpa memperhatikan keamanan penggunaannya. Sebelum menghentikan darah, lateks dapat masuk ke dalam sistem tubuh dan menyebabkan reaksi yang berlawanan jika memiliki sifat tersebut [53,54]. Di Suriname, buah J. gossypifolia dijadikan sebagai obat pencahar [55].

Metabolit sekunder yang telah diisolasi dan diidentifikasi dari jaringan J. gossypifolia adalah:

Keseluruhan

Senyawa diterpenoid yaitu citlalitrione (53) [56] dan jatrofenon (54) [57] diisolasi dari keseluruhan tanaman J. gossypifolia. Jatrofenon memiliki aktivitas antimikroba terhadap Staphylococcus aureus dengan aktivitas yang sebanding dengan penicillin G [57]. Senyawa kumarin-lignoid juga diperoleh secara keseluruhan yaitu propasin (23) [58].

Daun

Komposisi kimia ekstrak lipid dari daun J. gossypifolia (Tabel 1) telah diidentifikasi menggunakan GC-MS [59].

Tabel 1. Komposisi kimia ekstrak lipid dari daun J. gossypifolia.

Nama Senyawa Komposisi Kelimpahan Relatif (%)
Asam propanoat C3H6O2 0.9
Gliserol C3H8O3 12.0
Asam 2-pentenoat C3H8O 13.7
Arabitol C5H12O5 12.3
3,7,11,15-tetrametil-2-heksadeken-1-ol C20H40 2.0
D-Xylofuranosa C5H10O5 n.d
D-mannitol C6H14O 0.7
Asam heksadekanoat C16H32O2 7.8
Inositol C6H12O6 n.d
Asam oleat C18H34O2 6.3
Asam oktadekanoat C18H36O2 2.7
Oktakosan C28H58 n.d
Oktakosanol C28H58O 2.3
Stigmasterol C29H48O 2.5
α-Sitosterol C29H50O 8.8
α-Amyrin C30H50O n.d
Lup-20(29)-en-3-on C30H48O n.d
Betulin C30H50O2 n.d

Biji

Minyak dari biji J. gossypifolia mengandung senyawa phorbol ester, 1 yang memiliki aktivitas sebagai antitumor [6].

Batang

Lignan yaitu gossypidien (55) [60] dan gossypifan (56) [61] telah diisolasi dari batang J. gossypifolia. Senyawa kumarin-lignoid, cleomiscosin (57) diisolasi dengan sokletasi menggunakan heksan dan etilasetat [62]. Selanjutnya, dua senyawa lignin yaitu isogadain [(+)-savinin atau hibalakton] (58) [63] dan diester jatrodien (59) [64]. Lateks dari batang mengandung oktapeptida siklogossin B (61) [65]. Siklogossin A dan B memiliki aktivitas sebagai antimalaria [10].

Akar

Akar J. gossypifolia mengandung senyawa diterpenoid yaitu senyawa 12 [66], 15 dan 16 [26]. Biotransformasi senyawa 12 oleh Aspergillus niger ATCC 16404 yang menghasilkan diterpene 9β-hidroksiisabellione (62) [67].

Jatropha grossidentata

J.  grossidentata Pax et Hoffm. adalah perdu yang dikenal ‘Caniroja’ oleh masyarakat Indian Ayoreo yang tinggal  di daerah utara pusat Paraguay Chaco. Serbuk akarnya dijadikan rokok oleh para dukun [68].

Ekstrak petroleum eter dan etil asetat dari akar J. grossidentata menunjukkan aktivitas in vitro terhadap Trypanosoma cruzi dan strain Leishmania pada konsentrasi 10µg/mL. Beberapa  diterpen telah diisolasi dari akarnya, yang mana senyawa utama merujuk pada rhamnofolan jatrogrossidion (49) [69,70]. Jatrogrossidion menunjukkan aktivitas in vitro leishmanisidal dan trypanosidal yang kuat dengan IC100 masing-masing 0.75 dan 1.5-5.0 µg/mL [34].

Jatropha integerrima

J. integerrima Jacq. (sinonim J. pandurifolia Andr.) adalah tanaman pohon perdu yang memiliki kegunaan sebagai obat-obatan yang belum banyak dilaporkan. Lateksnya diketahui beracun. Daunnya jika dikunyah dapat menyebabkan rasa sakit, nyeri perut, dan sangat memuleskan perut [71].

Isolasi senyawa dari ekstrak CH2Cl2 lateks J. integerrima menghasilkan senyawa heptapeptida siklik yaitu integerrimida A (63) dan B (64). Kedua peptida ini menghambat derajat proliferasi sel ICP-298 melanoma manusia pada 50 μM, migrasi sel kanker pankreas Capan II manusia, namun tidak aktif dalam HSV-1, antifungi dan antimalaria [71].

Akar J. integerrima mengandung senyawa diterpen rhamnofolan endoperoksida (65) dan integerrimene (66) yang memiliki kerangka 8,9-seco-rhamnofolan [72].

Jatropha multifda

Lateks J. multifida mengandung senyawa glukosida non-sianogenik nitril, 1-siano-3-β-D-glukopiranosiloksi-(Z)-1-metil-1-propena yaitu multifidin A (67) [73]. Sebelumnya telah diisolasi multifidol (68) dan glukosidanya (69) [74], dua peptida siklik yaitu dekapeptida siklik, labaditin (70) [75] dan nonapeptida siklik, biobollein (71) [76].

Jatropha podagrica

J. podagrica mengandung alkaloid tetrametilpirazin (TMPZ) [77] yang menyebabkan vasodilasi [78] dan mengurangi trombosit [79]. Akar J. podagrica mengandung senyawa asam alifatik, asam japodat (72) dengan cincin siklopropana geminal-dimetil [80]. Asam ini menunjukkan aktivitas inhibisi terhadap insekta Helicoverpa zea subtilis dan tidak aktif sebagai antibakteri. Ekstrak kloroform dan metanol akar tanaman ini mengandung fraxidin (73) dan erithrinasinat (74) yang aktif menghambat pertumbuhan Bacillus subtilis [80]. Lateks dari batang J. podagrica mengandung senyawa nonapeptida siklik, podasiklin A (75) dan heptapeptida siklik, podasiklin B (76) [81].

Podasiklin B memiliki aktivitas sitotoksik yanng tinggi terhadap sel Dalton’s lymphoma ascites (DLA) dan Ehrlich’s ascites carcinoma (EAC)  dengan harga IC50 13.2 dan 15.5 µM. Aktivitas antihelmintes yang sedang terhadap cacing tanah Megascoplex konkanensis, Pontoscotex corethruses dan Eudrilus sp. pada dosis konsentrasi 2 mg/mL (standar mebendazole dan piperazine sitrat). Senyawa ini tidak memiliki aktivitas antifungal patogen Candida albicans, Aspergillus niger, Microsporum audouinii dan Trichophyton mentagrophytes [82].

Jatropha pohliana

Jatropha pohliana Müll. Arg. (sinonim: Adenophorum molissimum Pohl, Adenophorum luxurians Pohl, Jatropha molissimma (Pohl) Baill., Jatropha pohliana var. mollissima (Pohl) Müll. Arg., Jatropha luxurians (Pohl) Baill.) dikenal dengan nama Pinhão-bravo dan pinhão-de-purga [83].

Isolasi lateks J. pohliana menghasilkan senyawa peptida siklik yaitu pohlianin A (77), B (78), dan C (79) yang masing-masing aktivitas antimalaria dengan IC50 secara berturut-turut adalah 57 μM, 25 μM dan 16 μM, senyawa 79 adalah yang paling berpotensi sebagai antimalaria [11].

Jatropha tanjorensis

J. tanjorensis memiliki batang yang gemuk dan tebal dengan sedikit percabangan dan pigmentasi yang kurang. Pergantian daun cepat, daun tumbuh menjari dengan lima lekukan, berwarna hijau hingga hijau tua tanpa pigmentasi, kecuali pada daun yang sangat muda. Pinggiran daun berserat dengan jarak berjauhan dan petiolanya panjang dengan pigmentasi yang tebal. Bunga-bunganya tersusun berkelompok uniseksual dan biseksual, berukuran sedang warna hijau dengan sedikit warna pink muda, terdapat delapan stamen berwarna kuning yang tersusun dalam lapisan permukaan tunggal dengan serbuk sari yang mandul. Tanaman ini tidak memiliki buah [84].

J. tanjorensis terkenal sebagai obat alami untuk infeksi malaria dan hipertensi di beberapa daerah di Nigeria, akan tetapi ada beberapa kekurangan validasi ilmiah terhadap penyataan ini [85]. Masyarakat Edo di Nigeria menggunakan tanaman ini sebagai sayur dan dikenal sebagai catholic vegetable [86]. Penapisan fitokimia daun J. tanjorensis menunjukkan kandungan senyawa bioaktif seperti alkaloid, flavonoid, tannin, glikosida kardiak, antrakuinon dan saponin [87].

Jatropha unicostata

Komposisi relatif daun J. unicostata meliputi senyawa fitosterol yaitu sterol (0.9%), campesterol (4.9%), stigmasterol (36.5%), sitosterol (56.4%), stigmastanol (1.3%), senyawa 3-oxo-steroids yaitu campest-4-en-3-on (6.6%), stigmast-4,22-diena-3-on (19.8%), stigmast-4-en-3-on (73.8%), senyawa dioksosteroid yaitu campest-4-en-3,6-dion (5.6%), stigmast-4,22-diena-3,6-dion (42.2%), dan stigmast-4-en-3,6-dion (52.2%). Senyawa-senyawa ketosteroid kemungkinan berasal dari lateks tanaman ini. Fraxetin (7,8-dihidroksi-6-metoksi-kumarin) dan luteolin (3’,4’, 5,7-tetrahidroksiflavon) adalah penyusun utama fraksi etil asetat J. unicostata [1].

Jatropha weddelliana

J. weddelliana adalah tanaman perdu yang tumbuh pada tanah kering dan berkapur pada dataran tinggi yang membentuk “pantanal” pada Mato Grosso do Sul, Brazil [88]. Ekstrak heksan akar J. weddelliana mengandung 14 dan 32 dan ekstrak batang tanaman ini mengandung senyawa diterpen dengan kerangka lathyran yaitu jatrowedione (80) [89].

REFERENSI

  1. K. Franke, A.K. Nasher , dan J. Schmidt, Biochemical Systematics and Ecology, 2004, 32, 219-220.
  2. Supriadi, Penyakit Layu Bakteri pada Tumbuhan Obat dan Strategi Penanggulangannya, Pustaka Bogor, Bogor, 2000.
  3. K. Openshaw, Biomass Bioenergy, 2000, 19, 1-15.
  4. R. Staubmann, M. Schubert-Zsilavecz, A. Hiermann dan T. Kartnig, Phytochemistry, 1999, 50, 337-338.
  5. J. Martínez-Herrera, P. Siddhuraju, G. Francis, G. Dávila-Ortíz dan K. Becker, Food Chemistry, 2006, 96, 80-89.
  6. M. Hirota, M. Suttajit, H. Suguri, Y. Endo, K. Shudo, V. Wongchai, E. Hecker dan H. Fujiki, Cancer Research, 1988, 48, 5800-5804.
  7. W. Haas, H. Sterk dan M. Mittelbach, J. Nat. Prod., 2002, 65, 1334-1440.
  8. A.J.J. van den Berg, S.F.A.J. Horsten, J.J. Kettenes-van den Bosch, B.H. Kroes, C.J. Beukelman, B.R. Leeflang dan R.P. Labadie, FEBS Lett., 1995, 358, 215.
  9. C. Auvin-Guette, C. Baraguey, A. Blond, F. Lezenven, J.L. Pousset dan B. Bodo, Tetrahedron Lett. 1997, 38, 2845.
  10. W.F. Altei, M.S. Saito, D.G. Picchi, E.M. Cilli, P. Pauletti, D.H.S. Silva, I. Castro-Gamboa, M.J. Giannini, H. Verli dan V.S. Bolzani, 1st Brazilian Conference on Natural Products, Brazil, 2007.
  11. C. Auvin-Guette, C. Baraguey, A. Blond, H.S. Xavier, J.L. Pousset, dan B. Bodo, Tetrahedron, 1999, 55, 11495-11510.
  12. Marquez, L. Neuville, N. Moreau, J.P. Genet, A.F. dos Santos, M.C.C. de Andrade dan A.E.G. Sant’Ana, Phytochemistry, 2005, 66, 1804-1811.
  13. W. Naengchomnong, B. Tarnchompoo, dan Y. Thebtaranonth, J. Sci. Soc. Thailand, 1994, 20, 73-83.
  14. K. Ling-yi, M. Zhi-da, S. Jian-xia dan F. Rui, Acta Botanica Sinica, 1996, 38(2), 161-166.
  15. N. Ravindranath, M.R. Reddy, C. Ramesh, R. Ramu, A. Prabhakar, B. Jagadeesh dan B. Das, Chem. Pharm. Bull., 2004, 52(2), 608-611.
  16. R.A. Ahirrao, S.P. Pawar, L.B. Borse, S.L. Borse, S.G. Desai dan A.K. Muthu, Pharmacologyonline, 2009, 1, 276-279.
  17. N. Kannappan, S. Jaikumar, R. Manavalan dan A.K. Muthu, Pharmacologyonline, 2008, 1,279-293.
  18. O.O. Igbinosa, E.O. Igbinosa dan O.A. Aiyegoro, Afr. J. Pharm. & Pharmacol., 2009, 3(2), 058-062.
  19. B.A. Boateng dan F. Kusi, J. Applied Sci. Res., 2008, 4(8), 945-951.
  20. R. Yan, S. Gao, W. Yang, M. Cao, S. Wang dan F. Chen, Plant Soil Environ., 2008, 54(7), 294-300.
  21. C. Baraguey, C. Auvin-Guette, A. Blond, F. Cavelier, F. Levenzen, J.L. Pousset dan B. Bodo, J. Chem. Soc., Perkin Trans, 1998, 1, 3033-3039.
  22. M.P. Correa dan L.A. Penna, Dicionario das Plantas Uteis do Brasil e das Exoticas Cultivadas, Vol. III. Ministerio da Agricultura, Instituto Brasileiro de Desenvolvimento Florestal, RJ Brasil, 1984.
  23. J.A. Duke, Handbook of Medicinal Herbs, CRC Press, Florida, USA, 1985.
  24. A.F. dos Santos dan A.E.G. Sant’Ana, Phytother. Res., 1999, 13, 660-664.
  25. A.F. Silva, C.A. Simone, A.E.G. Sant’Ana, M.A. Pereira dan V.R.S. Malta, Z. Kristallogr. NCS, 2005, 220, 611-612.
  26. M.O.F. Goulart, A.E.G. Sant’Ana, R.A. de Lima dan S.H. Cavalcante, Química Nova, 1993, 16(2), 95-100.
  27. L.H. Martini, C.R. Souza, P.B. Marques, J.B. Calixto, R.A. Yunes dan D.O. Souza, Neurochemical Research, 2000, 25(2), 211-215.
  28. J.R. Lillehaug, K. Kleppe, C.W. Sigel, S.M. Kupchan, Biochim. Biophys. Acta, 1973, 327, 92-100.
  29. M. D’Alagni, M. De Petris, G.B. Marini-Bettolo, P.A. Temussi, FEBS Lett., 1983, 164, 51-56.
  30. F.V. Menezes, E.M. Carneiro, E. Delattre, A.C. Boschero, Braz. J. Med. Biol. Res., 1992, 25, 305-307.
  31. J.B. Calixto, A.E. Sant’Ana, Gen. Pharmacol., 1990, 21, 117-122.
  32. A.M. Silva, R.L. Brum, J.B. Calixto, Life Sci., 1995, 57, 863-871.
  33. V.L. Goncalves de Moraes, V.M. Rumjanek, J.B. Calixto, Eur. J. Pharmacol., 1996, 312, 333-339.
  34. G. Schmeda-Hirschmann, I. Razmilic, M. Sauvain, C. Moretti, V. Munoz, E. Ruiz, E. Balanza, A. Fournet, Phytother. Res., 1996, 10, 375-378.
  35. M.J. Chan-Bacab dan L.M. Peña-Rodríguez, Nat. Prod. Rep., 2001, 18, 674-688.
  36. G. Goel, H.P.S. Makkar, G. Francis dan K. Becker, International Journal of Toxicology, 2007, 26, 279-288.
  37. R. Can-Aké, G. Erosa-Rejón, F. May-Pat dan L.M. Peña-Rodríguez, Quím. Méx., 2004, 48, 11-14.
  38. K.R. Kirtikar dan B.D. Basu, Indian Medicinal Plants, Vol. III, 1980.
  39. A.O. Ogundare, Trends In Applied Sciences Research, 2007, 2(2), 145-150.
  40. H.M. Burkill, The Useful Plants of West Tropical Africa, Vol. 2, Royal Botanic Gardens, Kew, UK, 1994.
  41. A. Kakade, M. Pawar, K. Wadkar, S. Patil, C.S. Magdum dan N.S. Naikwade, Pharmacognosy Reviews, 2008, 2(4), 2-6.
  42. S. Csurches dan R. Edwards, Potential Environmental Weeds In Australia, The Director of The National Parks and Wildlife, Canberra, 1998.
  43. W. Balee, Footprints of Forest, Ka’apor Ethnobotany-The Historical Ecology of Plant Utilization by An Amazonian People, Columbia University Press, New York, 1994.
  44. J. Banerji, B. Das, P. Bose, R. Chakabarti, dan A. Chaterjee, Traditional Medicine, Oxford and IBH Publishing Co. Pvt, Ltd, New Dehli, 1993.
  45. G.F. Asprey dan P. Thornton, West Indian Medicinal Journal, 2005, 2(3), 3(1).
  46. H.A. Lioglier, Plantas Medicinales de Puerto Rico y del Caribe, Iberoamericana de Ediciones, Inc., San Juan, PR, 1990.
  47. S.K. Dash dan S. Padhy, J. Hum. Ecol., 2006, 20(1), 59-64.
  48. R. Dabur, A. Gupta, T.K. Mandal, D.D. Singh, V. Bajpai, A.M. Gurav dan G.S. Lavekar, Afr. J. Trad., 2007, 4(3), 313-318.
  49. C. Lans, T. Harper, K. Georges dan E. Bridgewater, BMC Complementary and Alternative Medicine, 2001, 1, 10.
  50. C. Lans, J. Ethnobiology and Ethnomedicine, 2007, 3(3), 1-12.
  51. A. Asase, J. Ethnopharmacology, 2005, 99, 273-279.
  52. J. Kayode dan M.A. Omotoyinbo, Research Journal of Botany, 2008, 3(3), 107-115.
  53. T. Oduola, O.G. Adeosun, T.A. Oduola, O.G. Avwiroro dan M.A. Oyeniyi, Euro. J. Gen. Med., 2005, 2(4), 140-143.
  54. T. Oduola, O.G. Avwiroro dan T.B. Ayanniyi, Afr. J. Biotech., 2005, 4(7), 679-681.
  55. T.V. Andel, J. Behari-Ramdas, R. Havinga dan S. Groenendijk, Ethnobotany Research & Applications, 2007, 5, 351-372.
  56. B. Das dan B. Venkataiah, Biochemical Systematics and Ecology, 1999, 27, 759-760.
  57. B. Das, N. Ravindranath, B. Venkataiah, C. Ramesh and P. Jayaprakash, Chem. Pharm. Bull., 2003, 51(7), 870-871.
  58. B. Das dan B. Venkataiah, Biochemical Systematics and Ecology, 2001, 29, 213-214.
  59. O.O. Sonibare, M.A. Sonibare dan E. Akharame, European Journal of Scientific Research, 2008, 21(1), 209-211.
  60. B. Das dan G. Anjani, Phytochemistry, 1999, 51, 115-117.
  61. B. Das dan R. Das, Phytochemistry, 1995, 40(10), 931-932.
  62. B. Das, A. Kashinatham, B. Venkataiah, K.V.N.S. Srivinas, G. Mahender dan M.R. Reddy,  Biochemical Systematics and Ecology, 2003, 31, 1189-1191.
  63. B. Das, S.P. Rao dan K.V.N.S. Srivinas, Planta Med., 1996, 62.
  64. B. Das, S.P. Rao, K.V.N.S. Srivinas dan R. Das, Phytochemistry, 1996, 41, 985.
  65. C. Auvun-Guette, C. Baraguey, A. Blond, J. L. Pousset dan B. Bodo, J. Nat. Prod., 1997, 60, 1155.
  66. S.M. Kupchan, C.W. Sigel, M.J. Matz and R.F. Bryan, J. Am. Chem. Soc., 1970, 92(14), 4476.
  67. M. Pertino, G. Schmeda-Hirschmann, L.S. Santos, J.A. Rodríguez dan C. Theoduloz, Z. Naturforsch, 2007, 62b, 275-279.
  68. G. Schmeda-Hirschmann, J. Ethnopharmacol., 1993, 39, 105-111.
  69. J. Jakupovic, M. Grenz dan G. Schmeda-Hirschmann, Phytochemistry, 1988, 27(9), 2997-2998.
  70. G. Schmeda-Hirschmann, F. Tsichritzis, dan J. Jakupovic, Phytochemistry, 1992, 31, 1731-1735.
  71. W. Mongkolvisut, S. Sutthivaiyakit, H. Leutbecher, S. Mika, I. Klaiber, W. Möller, H. Rösner, U. Beifuss dan J. Conrad, J. Nat. Prod., 2006, 69(10), 1435-1441.
  72. S. Sutthivaiyakit, W. Mongkolvisut, P. Ponsitipiboon, S. Prabpai, P. Kongsaeree, S. Ruchirawat dan C. Mahidol, Tetrahedron Letters, 2003, 44, 3637-3640.
  73. A.J.J. Van den Berg, S.F.A.J. Horsten, J.J.K. Bosch, C.J. Beukelman, B.H. Kroes dan R.P. Labadie, Phytochemistry, 1995, 40(2), 597-598.
  74. S. Kosasi, W.G. Van der Sluis dan R.P. Labadie, Phytochemistry, 1989, 28, 2439-2441.
  75. S. Kosasi, W.G. Van der Sluis, R. Boelens, L.A. ‘t Hart dan R.P. Labadie, FEBS Letters, 1989, 256, 91.
  76. R.P. Labadie, in Bioactive Natural Product, ed. S.M. Colegate and R.J. Molyneux, CRC Press, Boca Raton, Ann Arbor, London, Tokyo, 1993.
  77. J.A.O. Ojewole dan O.O. Odebiyi, Planta Med., 1980, 38, 332.
  78. X.Z. Dai dan R.J. Bache, J. Cardiovasc. Pharmaeol., 1985, 7,841.
  79. W.J. Wang, J. Neurol. Psychiat., 1984, 17, 121.
  80. O.O. Aiyelaagbe dan J.B. Gloer, Rec. Nat. Prod., 2008, 2(4), 100-106.
  81. A.J.J. Van den Berg, S.F.A.J. Horsten, J.J.K. Bosch, C.J. Beukelman, B.H. Kroes, B.R. Leeflang dan R.P. Labadie, Phytochemistry, 1996, 42(1), 129-133.
  82. R. Dahiya, J. Iran. Chem. Soc., 2008, 5(3), 445-452.
  83. C.K.A. Leal dan M.F. Agra, Acta Farm. Bonaerense, 2005, 24(1), 5-13.
  84. A.J. Prabakaran dan M. Sujatha, Genetic Resources and Crop Evolution, 1999, 46, 213-218.
  85. E.S. Orhue, M. Idu, J.E. Ataman dan L.E. Ebite, Asian J. Biol. Sci., 2008.
  86. J.K. Mensah, R.I. Okoli, J.O. Ohaju-Obodo dan K. Eifediyi, Afr. J. Biotech., 2008, 7(14), 2304-2309.
  87. S.O. Ehimwenma dan A.U. Osagie, Plant Arch., 2007, 7, 509-516.
  88. A. Pott dan V.J. Pott, Plantas do Pantanal, EMBRAPA, Corumbá, Brasil, 1994.
  89. R.L. Brum, N.K. Honda, S.M. Mazarin, S.C. Hess, A.J. Cavalheiro dan F.D. Monache, Phytochemistry, 1998, 48(7), 1225-1227.
Categories: Chemistry, Ethnobotany
Follow

Get every new post delivered to your Inbox.